Data ML Guide

Comprehensive guide for Data ML Process Flow Architecture

Data Intelligence Platform Team

Copyright © 2025 Data Intelligence Platform Team

Table of Contents

Table of Contents

Welcome to the Data ML API Documentation

Data ML - API Documentation

Table of Contents

1. Introduction

1.1 Purpose of this Guide

1.2 Overview of the Application

2. API Usage

2.1 Overview of the APIs

2.2 Authentication

3 API Definitions

1. Module:
2. Module:
3. Module:
4. Module:
5. Module:
. Module:

. Module:

(oI N N)]

. Module:

9. Module:

Login APIs
User APIs
RBAC APIs
Utils APIs
Template APIs
Dataset APIs
File APIs
Train APIs

Inference APIs

10. Module: Auth APIs

11. Module: Datalake APIs

12. Module: Ray APIs

4. API Status Codes

5. Version

Machine Learning Platform Documentation

Table of Contents

1. Purpose of the Platform

1.1 Overview

1.2 Why the Platform Exists

1.3 What the Platform Manages

1.4 Design Approach

1.5 Intended Usage

2. High-Level Architecture and Core Components

2.1 Architectural Overview

-2/48 -

© o © 00 . 3

11

14
14
18
22
26
33
37
38
41
42
42
43
43
45
45
45
45
45
46

47

Copyright © 2025 Data Intelligence Platform Team

Table of Contents

2.2 Core Components
2.2.1 API and Service Layer
2.2.2 Data Management Layer
2.2.3 Template and Schema Management
2.2.4 Preprocessing and Feature Engineering
2.2.5 Training and Execution Engine
2.2.6 Prediction and Inference Engine
2.2.7 Distributed and Asynchronous Processing
2.3 Cross-Cutting Concerns
3. Data Ingestion and Dataset Lifecycle
3.1 Overview
3.2 Dataset Creation
3.3 File-Level Handling for CSV Datasets
3.4 Schema Validation
3.5 Dataset Usability and State Tracking
3.6 Dataset Statistics Generation
3.7 Incremental Awareness and Reprocessing
3.8 Dataset Retrieval and Visualization Support
3.9 Role of Datasets in Downstream Workflows
4. Template and Schema Design
4.1 Role of Templates in the Platform
4.2 Template Structure
4.3 Data Type Governance
4.4 Template Validation Rules
4.5 Template Updates and Immutability Constraints
4.6 Training-Specific Templates
4.7 Templates as a Contract Across the Lifecycle
4.8 Operational Benefits of the Template Model
5. Preprocessing and Feature Engineering
5.1 Purpose of the Preprocessing Layer
5.2 Preprocess Sessions as Versioned Artifacts
5.3 Data Access and Execution Strategy
5.4 Column Categorization Using Templates
5.5 Numerical Feature Processing
5.6 Categorical Feature Encoding
5.7 Datetime Feature Handling

5.8 Missing Value Handling

O o o o oo oo o o o o o

5.9 Train-Test Split and Data Persistence

- 3/48 - Copyright © 2025 Data Intelligence Platform Team

Table of Contents

5.10 State Management and Reusability
5.11 Incremental and Tune-Aware Preprocessing
5.12 Error Handling and Observability
5.13 Why Preprocessing Is Explicit in This Platform
6. Model Training and Execution
6.1 How Training Fits Into the Platform
6.2 Problem Type as the Foundation
6.3 Mapping Dataset Columns to Meaning
6.4 Algorithm Resolution and Constraints
6.5 Creating a Training Session
6.6 Preprocessing and Execution Strategy
6.7 Hyperparameter Tuning and Incremental Learning
7. Inference and Prediction Workflow
7.1 Overview
7.2 Preconditions for Prediction
7.3 Single-Record (Form-Based) Prediction
7.4 Algorithm-Specific Inference Handling
7.5 Batch Prediction Workflow
7.6 Forecasting Inference
7.7 Prediction Persistence and Auditability
7.8 Error Handling and Stability
7.9 Design Rationale
8. Batch Prediction and Ray Execution
8.1 Purpose and Design Intent
8.2 Entry Conditions for Batch Prediction
8.3 Dataset Validation and Preparation
8.4 Feature Scaling and State Application
8.5 Ray Job Submission Model
8.6 Execution Inside Ray
8.7 Completion, Status Updates, and Results
9. Feature Importance and SHAP Analysis
9.1 When Feature Importance Is Available
9.2 Non-SHAP Feature Importance
9.3 SHAP-Based Explainability
9.4 Incremental Training and SHAP
10. Forecasting and Time-Series Inference

10.1 Supported Forecasting Models

O o o o oo oo o o o o o

10.2 Frequency and Horizon Validation

-4/48 - Copyright © 2025 Data Intelligence Platform Team

Table of Contents

10.3 Handling of Unique Identifiers
10.4 Exogenous Variable Processing
10.5 Forecast Execution and Output
10.6 Error Handling and Safety Guards

11. Error Handling, Validation, and Guardrails
11.1 Design Philosophy
11.2 Validation at Data Ingestion
11.3 Guardrails in Training Configuration
11.4 Preprocessing and Feature-Level Validation
11.5 Ray Job Execution and Failure Handling
11.6 Inference-Time Validation
11.7 Batch Prediction Safeguards

11.8 Status Propagation and User Visibility

o O O O O O o O o o o o o o

11.9 Summary

-5/48 - Copyright © 2025 Data Intelligence Platform Team

Welcome to the Data ML API Documentation

Welcome to the Data ML API Documentation

This site provides a comprehensive guide to the Data ML Platform API.

The platform is a machine learning service that allows users to ingest data, train predictive models, and perform inference. The
core workflow involves defining data structures via templates, uploading and validating datasets, creating predictors, and
running predictions.

Get Started
To view the complete user guide for all avilable features, please see the main documentation page:
* View the Full User Guide
To view the complete technical reference for all available endpoints, please see the main documentation page:

* View the Full API Documentation

- 6/48 - Copyright © 2025 Data Intelligence Platform Team

Data ML

- APl Documentation

Data ML - API Documentation

Version: 1.0.0
Date Created: September 17, 2025

Table of Contents

¢ 1. Introduction

e 1.1 Purpose of this Guide

¢ 1.2 Overview of the Application

e 2. API Usage

¢ 2.1 Overview of the APIs

¢ 2.2 Authentication

¢ 3 API Definitions

* 3. Module:
. Module:
. Module:
. Module:
. Module:
. Module:

© 0 N o U s

. Module:

Login APIs
User APIs
RBAC APIs
Utils APIs
Template APIs
Dataset APIs
File APIs

¢ 10. Module: Train APIs

¢ 11. Module: Inference APIs

¢ 12. Module: Auth APIs

¢ 13. Module: Datalake APIs

* 14. Module: Ray APIs

e 4. API Status Codes

* 5. Version

1. Introduction

1.1 Purpose of this Guide

This guide provides a comprehensive overview of the Data-ML Platform's Application Programming Interface (API). It is intended
for developers and data scientists who need to interact with the platform programmatically. This document details the available

API endpoints, their functionalities, request/response formats, and provides examples for seamless integration.

1.2 Overview of the Application

The Data-ML platform is a machine learning service that allows users to ingest data, train predictive models, and perform

inference. The core workflow involves defining data structures via templates, uploading and validating datasets against these
templates, and then creating and training predictors using Ray. Once a model is trained, the platform provides endpoints for both
real-time (form-based) and bulk (batch) predictions, enabling a complete end-to-end machine learning lifecycle.

Copyright © 2025 Data Intelligence Platform Team

2. APl Usage

2.1 Overview of the APIs

2. API Usage

The following table provides a summary of the available API modules and their primary functions.

Module
Login

Users

RBAC

Template

Dataset

File

Train

Inference

Datalake

Utils

2.2 Authentication

API Endpoint

POST /api/v1l/login/access-token
POST /api/vl/users/create-user
GET /api/vl/users/read-users

POST /api/vl/rbac/roles/

POST /api/vl/rbac/permissions/

POST /api/vl/template/

GET /api/vl/template/list

POST /api/vl/dataset/upload

GET /api/vl/dataset/list
POST /api/vl/files/add
GET /api/vl/files/list
POST /api/vl/train/

GET /api/vl/train/list

POST /api/vl/inference/

POST /api/vl/inference/batch-

prediction
GET /api/vl/datalake/schemas

GET /api/vl/utils/health-check/

Description
Handles user authentication to provide access tokens.

Manages user creation and retrieval.

Manages Role-Based Access Control by creating roles and
permissions.

Allows for the creation, retrieval, update, and deletion of data
templates.

Handles dataset uploading, listing, validation, and statistical
analysis.

Manages individual files within datasets.

Manages the creation and lifecycle of model training jobs.

Provides endpoints for running predictions using trained
models.

Provides utility endpoints to inspect the underlying datalake.

Provides utility endpoints for system health checks.

Before making calls to most API endpoints, you must obtain a bearer token. The API expects an Authorization header with the

value Bearer <your token>.You can obtain this token by calling the POST /api/v1/login/access-token endpoint with valid

credentials.

3 API Definitions

1. Module: Login APIs

1.1 Login Access Token

This API is used to authenticate a user via form data and receive an access token.

Endpoint: /api/vl/login/access-token

Method: POST

- 8/48 - Copyright © 2025 Data Intelligence Platform Team

Request Body

Name
grant_type
username
password
scope
client id

client_secret

Sample Request

curl --location --request POST 'http://localhost:8000/api/v1/login/access-token' \

Description
Grant Type
Username
Password
Scope

Client ID

Client Secret

Data Type
String
String
String
String
String

String

--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'username=admin' \
--data-urlencode 'password=adminl23"'

Sample Response

"access_token": "eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJI9...",

"token_type": "bearer"

1.2 Test Token

Validates the current user's token and returns their details.

Endpoint: /api/vl/login/test-token

Method: POST

Request Headers

Name

Authorization

Sample Request

Description

The bearer token.

Data Type

String

curl --location --request POST 'http://localhost:8000/api/v1/login/test-token' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

{
"tenant_id": "alb2c3d4-e5f6-7890-1234-567890abcdef",
"first name": "John",
"last_name": "Doe",
"email": "john.doe@example.com",
"username": "johndoe",
"id": 1,
"is_active": true

}

1.3 Refresh Token

Refreshes an access token using a valid refresh token.

Endpoint: /api/vl/refresh

Method: POST

-9/48 -

Omittable

O

M

Omittable

M

1. Module: Login APIs

Copyright © 2025 Data Intelligence Platform Team

1. Module: Login APIs

Query Parameters
Name Description Data Type Omittable

refresh token The refresh token provided at login. String M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/refresh?refresh token=eyJhbGciOiJIUzIINiJ...'

Sample Response

{
"access_token": "eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJ9.new.token...",
"token_type": "bearer"
}
1.4 Logout

Logs out a user by invalidating their refresh token.

Endpoint: /api/v1/logout
Method: POST

Query Parameters

Name Description Data Type Omittable

refresh token The refresh token to invalidate. String M

Sample Request

curl --location --request POST 'http://localhost:8000/api/v1/logout?refresh_token=eyJhbGci0iJIUzI1NiJ...'

Sample Response

"status": 200,
"message”: "User successfully logged out"

1.5 Reset Password
Resets a user's password.

Endpoint: /api/vl/reset-password
Method: POST

Query Parameters

Name Description Data Type Omittable
user name The username of the account. String M
new password The new password to set. String M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/reset-password?user name=johndoe&new password=NewSecurePasswordl23'
(200 OK)

Sample Response

-10/48 - Copyright © 2025 Data Intelligence Platform Team

"status": 200,
"message": "Password has been reset successfully"

2. Module: User APIs
2.1 Create User
This API creates a new user in the system.

Endpoint: /api/vl/users/create-user
Method: POST

2. Module: User APIs

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M

Request Body (application/json)
Name Description Data Type Omittable
tenant id ID of the tenant the user belongs to. String M
first name First Name String (0]
last name Last Name String (6]
email User's unique email address. String (email) M
username User's unique username. String M
password User's password. String M

Sample Request

curl --location
--header 'Authorization: Bearer <jwt token>' \
--header 'Content-Type: application/json' \
--data-raw '{

"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c",

"first_name": "jane"

"last_name": "doe",

"email": "jane.doe@example.com",

"username": "janedoe",

"password": "Password123!"

3

2.2 Read Users

Retrieves a list of all users in the system.

Endpoint: /api/vl/users/read-users/
Method: GET

--request POST 'http://localhost:8000/api/vl/users/create-user' \

-11/48 -

Copyright © 2025 Data Intelligence Platform Team

Request Headers

2. Module: User APIs

Name Description Data Type Omittable
Authorization The bearer token. String M
Sample Request
curl --location --request GET 'http://localhost:8000/api/vl/users/read-users/' \
--header 'Authorization: Bearer <jwt_token>'
Sample Response
{
"data": [
{
"id": 1,
“tenant_id": "ebl128f85-c955-4f2f-b109-0afalaed409c",
"first_name": "John",
"last_name": "Doe",
"email": "john.doe@example.com",
"username": "johndoe",
"is_active": true
},
{
"id": 2,
"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c",
"first_name": "Jane",
"last name": "Doe",
"email": "jane.doe@example.com",
"username": "janedoe",
"is_active": true
}
1.
"count": 2
}
2.3 Retrieve User by ID
Retrieves the details for a single user by their unique ID.
Endpoint: /api/vl/users/{user id}
Method: GET
Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M
Path Parameters
Name Description Data Type Omittable
user id The unique ID of the user. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/v1/users/1' \
--header 'Authorization: Bearer <jwt token>'

Sample Response

gy i,

"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed469c",
"first_name": "John",

"last name": "Doe",

"email": "john.doe@example.com",

"username": "johndoe",

-12/48 -

Copyright © 2025 Data Intelligence Platform Team

"is_active": true

3. Module: RBAC APIs
3.1 Create Role
This API creates a new role within a specific tenant.

Endpoint: /api/vl/rbac/roles/
Method: PoST

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M
Request Body (application/json)
Name Description Data Type
name The name of the role (e.g., "data_scientist"). String
tenant id The unique ID of the tenant. String
Sample Request
curl --location --request POST ‘'http://localhost:8000/api/vl/rbac/roles/' \
--header 'Authorization: Bearer <jwt_token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"name": "data_scientist",
"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c"
3
Sample Response
{
"id": 5,
"tenant id": "ebl28f85-c955-4f2f-b109-0afalaed409c”
"name": "data_scientist"
}
3.2 Create Permission
This API creates a new permission within a specific tenant.
Endpoint: /api/vl/rbac/permissions/
Method: POST
Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M
Request Body (application/json)
Name Description
name The name of the permission (e.g., "can delete dataset").
tenant id The unique ID of the tenant.

-13/48 -

3. Module: RBAC APIs

Omittable

M

M
Data Type Omittable
String M
String M

Copyright © 2025 Data Intelligence Platform Team

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/rbac/permissions/"'

--header 'Authorization: Bearer <jwt token>' \
--header 'Content-Type: application/json' \
--data-raw '{

"name": "can_train_models",

"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c"
3

Sample Response

{

Hilelte 29,

"name": "can_train_models",

"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c"
}

4. Module: Utils APIs

4. Module: Utils APIs

This section provides utility APIs for system monitoring and health checks.

4.1 Health Check

This API performs a simple health check of the service to confirm it is running and accessible.

Endpoint: /api/vl/utils/health-check/
Method: GET

Sample Request

curl --location --request GET 'http://localhost:8000/api/v1l/utils/health-check/'

Sample Response

"status": "ok",
"message": "Service is healthy."

5. Module: Template APIs

This section details all APIs related to creating, retrieving, updating, and deleting data templates.

5.1 Create Template
This API creates a new data template with a defined schema.

Endpoint: /api/vl/template/
Method: POST

Request Headers

Name Description Data Type

Authorization The bearer token. String

- 14/48 -

Omittable

M

Copyright © 2025 Data Intelligence Platform Team

Request Body (application/json)

Name Description

template_name A unique name for the template.
template_schema Array of objects defining the columns.
template_schema.column_name The name of the column/header.

template schema.data type The expected data type (e.g., String, Float).
template_schema.default value A default value for the column.

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/template/' \
--header 'Authorization: Bearer <jwt_token>' \

--header 'Content-Type: application/json' \

--data-raw '{

"template name": "Telecom Customer Usage",
"template_schema": [
{
"column_name": "CustomerID"

"data_type": "String",
"default_value": "CUST-0000"

"column_name": "DataUsageGB",
"data_type": "Float",
"default_value": "0.0"
}
]
3

Sample Response

{
"status": 201,
"message": "Template created successfully.",
"id": 1
}
5.2 Get All Templates

This API retrieves a list of all available templates.

Endpoint: /api/vl/template/list
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/template/list' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

{
"total": 1,
"data": [
{
"template_name": "Telecom Customer Usage",
"id": 1,

"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed469c"
“no_of_columns": 2,

"created_by": "admin",

“created_at": "2025-09-18T10:00:00Z",

- 15/48 -

Data Type
String
Array
String
String

String

5. Module: Template APIs

Omittable

M

£ 2 ©

@)

Copyright © 2025 Data Intelligence Platform Team

"modified at":
"modified by":

"2025-09-18T10:00:00Z",
"admin"

5.3 Get Template

This API retrieves a single template and its full schema by its unique ID.

Endpoint: /api/vl/template/{template id}
Method: GET

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M
Path Parameters
Name Description Data Type
template id The unique ID of the template. Integer
Sample Request
curl --location --request GET 'http://localhost:8000/api/v1l/template/1' \
--header 'Authorization: Bearer <jwt_token>'
Sample Response
{
"template_name": "Telecom Customer Usage",
Hides
“tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c",
"no_of_columns": 2,
"created_by": "admin",
"created at": "2025-09-18T10:00:002",
"modified at": "2025-89-18T10:00:00Z",
"modified by": "admin",
"template_schema": [
{
“column_name": "CustomerID",
"data_type": "String",
"default_value": "CUST-0000"
}
{
"column_name": "DataUsageGB"
"data_type": "Float",
"default_value": "0.0"
}
1
}
5.4 Update Template
This API updates an existing template's name and schema.
Endpoint: /api/vl/template/update/{template id}
Method: PUT
Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M
-16/48 -

5. Module: Template APIs

Omittable

Copyright © 2025 Data Intelligence Platform Team

Path Parameters

Name Description

template id The unique ID of the template to update.

Request Body (application/json)

Name Description

template_name The new name for the template.

template schema

Sample Request

curl --location --request PUT 'http://localhost:8000/api/vl/template/update/1' \
--header 'Authorization: Bearer <jwt_ token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"template_name": "Telecom Customer Usage V2",

The new array of columns for the template.

"template_schema":

{

"column_name":

"data_type":

{

"column_name":

"data_type":

[
"CustomerID",

"String"

"DataUsageGB",
"Float"

{
"column_name": "PlanType",
"data_type": "String"
}
]
3

Sample Response

{
"template_name": "Telecom Customer Usage V2",
"template_schema": [
{
"column_name": "CustomerID",
"data_type": "String",
"default_value": null
I
{
"column_name": "DataUsageGB",
"data_type": "Float",
"default_value": null
Y,
{
"column_name": "PlanType",
"data_type": "String",
"default_value": null
}
]
}
5.5 Delete Template

This API deletes a template by its unique ID.

Endpoint: /api/vl/template/{template id}
Method: DELETE

Request Headers

Name Description Data Type

Authorization The bearer token. String

-17/48 -

Data Type

Integer

Data Type
String

Array

Omittable

M

5. Module: Template APIs

Omittable

M
Omittable
M
(0]

Copyright © 2025 Data Intelligence Platform Team

Path Parameters

6. Module: Dataset APIs

Name Description Data Type Omittable
template id The unique ID of the template to delete. Integer M
Sample Request
curl --location --request DELETE 'http://localhost:8000/api/v1l/template/1' \
--header 'Authorization: Bearer <jwt_token>'
Sample Response
{
"status_code": 200,
"message": "Template deleted successfully"
}
6. Module: Dataset APIs
This section details all APIs related to uploading, managing, and analyzing datasets.
6.1 Upload Dataset
This API uploads data file(s) to create a new dataset and begin the validation process.
Endpoint: /api/vl/dataset/upload
Method: POST
Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M
Query Parameters
Name Description Data Type Omittable
dataset name A unique name for the new dataset. String M
usage The intended usage (e.g., 'p' for prediction). String M
template id The ID of the template to validate against. Integer (0]
iceberg_table name The name of the Iceberg table if applicable. String (6]
Request Body (multipart/form-data)
Name Description Data Type Omittable
files The data file(s) to be uploaded. File M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/dataset/upload?dataset name=forecast-pll&template id=2&usage=p' \

--header 'Authorization: Bearer <jwt_token>' \
--form 'files=@"/path/to/your/network congestion_dataset.csv"'

Sample Response

-18/48 -

Copyright © 2025 Data Intelligence Platform Team

{
"dataset_id": 61,
"dataset_name": "forecast-pll",
"data_source": "csv",
"files": [
{
"dataset_id": 61,
"id": 80,
“file name": "network congestion dataset.csv",
“created at": "2025-09-18T18:30:00Z",
"modified at": "2025-09-18T18:30:00Z",
"total_fields": 5,
"total records": 10000,
"error_report": null
}
1
}
6.2 List Datasets

This API retrieves a list of all available datasets.

Endpoint: /api/vl/dataset/list
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/dataset/list"' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

{
"total": 1,
"data": [
{
"tenant_id": "ebl28f85-c955-4f2f-b109-0afalaed409c",
"dataset_name": "forecast-pll",
"file_count": 1,
"is valid": true,
"created_by": "admin",
"template_id": 2,
"data_source": "csv",
"iceberg table name": "forecast pll iceberg",
"id": 61,
"template_name": "Network Congestion Template",
“created_at": "2025-09-18T18:30:00Z",
"modified at": "2025-09-18T18:30:00Z",
"dataset_usability": "85%",
"usage": "p",
"dataset_usage": "Prediction"
}
1
}

6.3 List Validated Datasets
This API retrieves a list of datasets that have successfully passed the validation process.

Endpoint: /api/vl/dataset/list validated
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

- 19/48 -

6. Module: Dataset APIs

Copyright © 2025 Data Intelligence Platform Team

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/dataset/list validated' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

{
"tenant_id": "eb128f85-c955-4f2f-b109-0afalaed409c",
"dataset_name": "forecast-pll",
"file count": 1,
"is_valid": true,
"created_by": "admin",
"template_id": 2,
"id": 61
}

6.4 Delete Dataset
This API deletes a dataset by its unique ID.

Endpoint: /api/vl/dataset/delete/{dataset id}
Method: DELETE

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Path Parameters

Name Description Data Type

dataset id The unique ID of the dataset to delete. Integer

Sample Request

curl --location --request DELETE 'http://localhost:8000/api/vl/dataset/delete/61' \
--header 'Authorization: Bearer <jwt token>

Sample Response

"status_code": 200,
"message": "Dataset deleted successfully"

6.5 Get Dataset by ID
This API retrieves detailed information for a single dataset by its unique ID.

Endpoint: /api/vl/dataset/get dataset by id
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

-20/48 -

6. Module: Dataset APIs

Omittable

M

Copyright © 2025 Data Intelligence Platform Team

6. Module: Dataset APIs

Query Parameters

Name Description Data Type Omittable

dataset id The unique ID of the dataset. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/dataset/get dataset by id?dataset id=61' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

{
"dataset_name": "forecast-pll"
"dataset_path": "/path/to/data/forecast-pll",
"validated path": "/path/to/validated/forecast-pll",
"iceberg table name": "forecast_pll_iceberg",
"data_source": "csv"

}

6.6 View Dataset

This API returns a preview of the data within a specified dataset.

Endpoint: /api/vl/dataset/view
Method: GET

Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M
Query Parameters
Name Description Data Type Omittable

dataset id The unique ID of the dataset to view. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/dataset/view?dataset id=61' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

{
"preview": [
{ "timestamp": "2025-08-09T16:23:00Z", "tower_id": "TOWER 001", "traffic_load gbps": 1.2, "connected users": 150, "Congestion_Level Percent": 15.5 },
{ "timestamp": "2025-08-09T16:24:00Z", "tower_id": "TOWER 001", "traffic_load gbps": 1.3, "connected users": 155, "Congestion_Level Percent": 16.0 }
1
}

6.7 Generate Statistics
This API initiates a job to generate descriptive statistics for a dataset.

Endpoint: /api/vl/dataset/generate statistics
Method: POST

-21/48 - Copyright © 2025 Data Intelligence Platform Team

Request Headers

7. Module: File APIs

Name Description Data Type Omittable
Authorization The bearer token. String M

Query Parameters
Name Description Data Type Omittable
dataset id The unique ID of the dataset. Integer M

Sample Request

curl --location
--header 'Authorization: Bearer <jwt_token>'

Sample Response

"status": "success",
"message "Statistics generation job submitted successfully.",
"job_id": "stat-job-12345"

7. Module: File APIs

--request POST 'http://localhost:8000/api/vl/dataset/generate statistics?dataset id=61' \

This section details all APIs related to managing individual files within datasets.

7.1 Add Files to Dataset
This API adds one or more files to an existing dataset.

Endpoint: /api/vl/files/add
Method: POST

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M
Query Parameters

Name Description Data Type Omittable

dataset id The unique ID of the dataset to add files to. Integer M
Request Body (multipart/form-data)

Name Description Data Type Omittable

files The data file(s) to be uploaded. File M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/files/add?dataset id=101' \
--header 'Authorization: Bearer <jwt_token>' \
--form 'files=@"/path/to/your/new_data.csv"'

-22/48 -

Copyright © 2025 Data Intelligence Platform Team

Sample Response

{
"dataset_id": 101,
"dataset_name": "telecom usage qg3",
"data_source": "csv",
"files": [
{
"dataset_id": 101,
"id": 81,
"file_name": "new_data.csv",
“created at": "2025-09-18T19:00:00Z",
"modified at": "2025-09-18T19:00:00Z",
"total_fields": 15,
"total records": 5000,
“error_report": null
}
]
}

7.2 List Files in Dataset

Retrieves a list of all files associated with a specific dataset.

Endpoint: /api/vl/files/list
Method: GET

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M

Query Parameters
Name Description Data Type
dataset id The unique ID of the dataset to list files for. Integer

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/files/list?dataset id=101' \

--header 'Authorization: Bearer <jwt_token>'

Sample Response

{
"total": 2,
"data": [
{
"dataset_id": 101,
"id": 80,
"file_name": "telecom_data.csv",
"created at": "2025-09-18T14:30:00Z",
"modified at": "2025-09-18T14:30:00Z",
"total_fields": 15,
“total_records": 10000,
"error_report": null
},
{
"dataset_id": 101,
"id": 81,
“file name": "new_data.csv",
"created_at": "2025-09-18T19:00:00Z",
"modified at": "2025-09-18T19:00:00Z",
"total fields": 15,
"total_records": 5000,
"error_report": null
}
1
}
7.3 View File Content

Retrieves a preview of the content of a specific file.

- 23/48 -

7. Module: File APIs

Omittable

M

Copyright © 2025 Data Intelligence Platform Team

Endpoint: /api/vl/files/view
Method: GET

Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M

Query Parameters
Name Description Data Type

file id The unique ID of the file to view. Integer

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/files/view?file id=80"' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

{

"file id": 80,

"content_preview": [
"CustomerID,DataUsageGB,PlanType,Churn",
"CUST-0001,10.5,Premium, False",
"CUST-0002,2.1,Basic,True"

]

}
7.4 Delete File

Deletes a specific file by its unique ID.

Endpoint: /api/vl/files/delete/{file id}
Method: DELETE

Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M

Path Parameters
Name Description Data Type

file id The unique ID of the file to delete. Integer

Sample Request

curl --location --request DELETE 'http://localhost:8000/api/vl/files/delete/81' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

"status_code": 200,
"message”: "File deleted successfully"

- 24/48 -

7. Module: File APIs

Omittable

M

Omittable

M

Copyright © 2025 Data Intelligence Platform Team

7.5 Download File
Downloads the raw content of a specific file.

Endpoint: /api/vl/files/download/
Method: GET

Request Headers

Name Description Data Type

Authorization The bearer token. String

Query Parameters

Name Description

file path The full storage path of the file.

Sample Request

Note the -o flag to save the output to a local file
curl --location
--header 'Authorization: Bearer <jwt_token>' \
-0 downloaded telecom data.csv

Sample Response

The raw content of the file is returned in the response body.

7.6 Get File Details by ID
Retrieves detailed metadata for a single file by its unique ID.

Endpoint: /api/vl/files/get file by id/
Method: GET

Request Headers

7. Module: File APIs

Omittable

M
Data Type Omittable
String M

Name Description Data Type
Authorization The bearer token. String

Query Parameters
Name Description Data Type
file id The unique ID of the file. Integer

Sample Request

curl --location
--header 'Authorization: Bearer <jwt_token>'

Sample Response

{
"dataset id": 101,
"id": 80,
"file_name": "telecom data.csv",

"created_at": "2025-09-18T14:30:00Z",

"modified at": "2025-09-18T14:30:00Z",

"total fields": 15,

"total_records": 10000,

"error_report": null,

"csv_file path": "/mnt/data/file_store/dataset 101/telecom_data.csv",

- 25/48 -

Omittable

M
Omittable
M

--request GET 'http://localhost:8000/api/vl/files/get _file by id/?file_id=80"' \

--request GET 'http://localhost:8000/api/vl/files/download/?file_path=/mnt/data/file_store/dataset 101/telecom data.csv' \

Copyright © 2025 Data Intelligence Platform Team

"hdf_file path":

"/mnt/data/file store/dataset 101/telecom data.hdf"

8. Module: Train APIs

8.1 Create Training Jol

This API creates a predictor and starts a new model training job using a validated dataset.

Endpoint: /api/v

b

1/train/ Method: POST

Request Headers

Name

Authorization

Description Data Type

The bearer token. String

Request Body (application/json)

Name
dataset id
predictor name
domain

problem type
columns
is_incremental
algorithm

shap_enabled

Sample Request

Description

The ID of the validated dataset to train on.

A unique name for this predictor/model.

The business domain (e.g., Churn, Forecast).

The ML problem type (e.g., Classification).

Array defining the role of each column.

Flag for incremental training.
Specify the algorithm to be used.

Flag to enable SHAP analysis.

curl --location --request POST 'http://localhost:8000/api/vl/train/' \

--header 'Authorizat

--header 'Content-Ty

--data-raw '{
"dataset_id": 10
"predictor_name"
“domain": "Churn

"problem_type":
"columns": [
{
“column_}
"data_ty
"attribu
},
{
“column_|
"data_ty]
"attribu
}

1,
"shap_enabled":

3

ion: Bearer <jwt token>' \
pe: application/json' \

1,
: “"churn_v1",

"Classification",

name": "CustomerID",
pe": "String",
te name": "Id"

name": "Churn",
pe": "Boolean",
te_name": "Target"

true

Sample Response

{

"id": 5001,
“tenant_id": "eb
"predictor_name"
"problem_type":
"created_by": "a
"dataset_id": 10
"created_at": "2

"modified at": "

128f85-c955-4f2f-b109-0afalaed409c",
: "churn v1",

"Classification",

dmin",

1,

025-09-18T14:30:00Z",
2025-09-18T14:30:00Z",

- 26/48 -

Omittable

M

Data Type
Integer
String
String
String
Array
Boolean
String

Boolean

8. Module: Train APIs

Omittable

£ B B =B R

@)

Copyright © 2025 Data Intelligence Platform Team

"training status": "submitted to_ ray"

8.2 Get Details for Training

Retrieves dataset schema and attributes required to configure

Endpoint: /api/vl/train/get details Method: POST

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M
Request Body (application/json)
Name Description Data Type
dataset_id The ID of the dataset. Integer
predictor_name The name for the new predictor. String
domain The business domain. String
problem_ type The ML problem type. String
Sample Request
curl --location --request POST 'http://localhost:8000/api/vl/train/get_details' \
--header 'Authorization: Bearer <jwt token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"dataset_id": 101,
"predictor_name": "churn_v1",
"domain": "Churn",
"problem_type": "Classification"
3
Sample Response
{
"dataset id": 101,
"predictor_name": "churn_v1",
"domain": "Churn",
"problem_type": "Classification",
"dataset schema": [
{ "column_name": "CustomerID", "data type": "String" },
{ "column_name": "Tenure", "data_type": "Integer" },
{ "column_name": "Churn", "data_type": "Boolean" }
1P
"attributes": [
"Id,
"Ta Fget" ’
"Feature"
1
}
8.3 List Training Jobs
Retrieves a list of all historical and active training jobs.
Endpoint: /api/vl/train/list Method: GET
Request Headers
Name Description Data Type Omittable
Authorization The bearer token. String M

-27/48 -

a training job.

8. Module: Train APIs

Omittable

M

M
M
M

Copyright © 2025 Data Intelligence Platform Team

8. Module: Train APIs

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/train/list' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

{
"total": 1,
"data": [
{
"tenant _id": "eb128f85-c955-4f2f-b109-0afalaed409c",
"predictor_name": "churn_v1",
"preprocess_id": 1,
"problem type": "Classification",
"domain": "Churn",
"created_by": "admin",
"id": 5001,
"dataset_id": 101,
"dataset name": "telecom usage g3",
"data_source": "csv",
"created at": "2025-09-18T14:30:00Z",
"modified at": "2025-09-18T14:30:00Z",
"algorithm": "XGBoost",
"accuracy": 0.92,
"ml_model_status": "completed",
"train_status": "completed",
"training status": "Completed"
}
]
}

8.4 Refresh Training Statuses

Refreshes the statuses of training jobs from the backend engine and returns the updated list.
Endpoint: /api/vl/train/refresh Method: GET

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M
Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/train/refresh' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

{
"total": 1,
"data": [
{
"tenant _id": "eb128f85-c955-4f2f-b109-0afalaed409c",
"predictor name": “churn_v1",
"preprocess_id": 1,
"problem type": "Classification",
"domain": "Churn",
“created by": "admin",
"id": 5001,
"dataset_id": 101,
"dataset _name": "telecom usage q3",
"data_source "csv"
“created_at" 2025-09-26T10:30:00Z",
"modified at": "2025-09-26T10:45:00Z",
"algorithm": "XGBoost",
"accuracy": 0.92,
"ml_model_status": "completed",
“train_status": "completed",
“training status": "Completed"
}
1
}

-28/48 - Copyright © 2025 Data Intelligence Platform Team

8.5 Delete Training Job
Deletes a training job and its associated model by its unique ID.
Endpoint: /api/vl/train/delete/{id} Method: DELETE
Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Path Parameters

Name Description Data Type

id The unique ID of the training job to delete. Integer

Sample Request

curl --location --request DELETE 'http://localhost:8000/api/v1l/train/delete/5001"' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

"status_code": 200,
"message": "Training job deleted successfully"

8.6 Update Model
Updates a model with a new preprocessing ID.
Endpoint: /api/vl/train/update/ Method: POST
Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Request Body (application/json)

Name Description Data Type
train_id The ID of the training job. Integer
preprocess_id The ID of the new preprocessing step. Integer

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/train/update/' \
--header 'Authorization: Bearer <jwt_token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"train_id": 19,
"preprocess_id": 20

Sample Response

"data": "Model updated successfully"
"status_code": 200,

- 29/48 -

8. Module: Train APIs

Omittable
M
Omittable
M
M

Copyright © 2025 Data Intelligence Platform Team

8. Module: Train APIs

"message": "Success"

8.7 Training Result Callback
This is a callback endpoint for the Ray engine to post the results of a training job.
Endpoint: /api/vl/train/result Method: POST

Request Body (application/json)

Name Description Data Type Omittable
result The result object from the training job. Object M
train id The ID of the training job. Integer (0]
preprocess_id The ID of the preprocessing job. String (0]

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/train/result' \
--header 'Content-Type: application/json' \
--data-raw '{
"result": {
"metrics": {
"accuracy": 0.925
}
"checkpoint": "/path/to/model/checkpoint",
"error": null,
"path": "/path/to/model/output"
I
"train id": 19,
"preprocess_id": "preprocess-xyz"

3

Sample Response

"status": "success",
"message": "Result received"

8.8 Download Training Schema
Downloads the input schema used for a specific training job.
Endpoint: /api/vl/train/download-schema/{train id} Method: GET
Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Path Parameters

Name Description Data Type Omittable

train_id The unique ID of the training job. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/v1l/train/download-schema/19' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

- 30/48 - Copyright © 2025 Data Intelligence Platform Team

8. Module: Train APIs

{
"schema": [
{ "column_name": "CustomerID", "data_type": "String" },
{ "column_name": "Tenure", "data_type": "Integer" },
{ "column_name": "Churn", "data_type": "Boolean" }
1
}

8.9 View Feature Importance
Retrieves the results of a previously generated feature importance analysis.
Endpoint: /api/vl/train/view-feature-importance Method: GET
Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M
Query Parameters
Name Description Data Type Omittable

train id The unique ID of the training job. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/train/view-feature-importance?train_id=19' \
--header 'Authorization: Bearer <jwt token>'

Sample Response

{

"feature_importance": {
"Tenure": 0.45,
"MonthlyCharges": 0.30,
"ContractType": 0.15,
"InternetService": 0.10

H

"status": "completed"

}

8.10 Generate Feature Importance
Starts a new job to calculate the feature importance (SHAP analysis) for a model.
Endpoint: /api/vl/train/generate-feature-importance Method: GET
Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Query Parameters
Name Description Data Type Omittable

train_id The unique ID of the training job. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/train/generate-feature-importance?train id=19' \
--header 'Authorization: Bearer <jwt token>'

-31/48 - Copyright © 2025 Data Intelligence Platform Team

8. Module: Train APIs

Sample Response

{
"status": "success",
"message": "Feature importance job submitted successfully."
"shap_job_id": "shap-job-67890"

}

8.11 SHAP Result Callback
This is a callback endpoint for the Ray engine to post the results of a SHAP analysis.
Endpoint: /api/vl/train/shap-result Method: POST

Request Body (application/json)

Name Description Data Type Omittable
training id The ID of the training job. Integer M
result A JSON object containing the SHAP results. Object M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/train/shap-result' \
--header 'Content-Type: application/json' \
--data-raw '{
"training_id": 19,
"result": {
"Tenure": 0.45,
"MonthlyCharges": 0.30,
"ContractType": 0.15,
"InternetService": 0.10

3

Sample Response

"status": "success",
"message”: "SHAP result received"

8.12 Delete Feature Importance
Deletes the feature importance results for a specific training job.
Endpoint: /api/vl/train/delete-feature-importance/{train id} Method: DELETE
Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M
Path Parameters
Name Description Data Type Omittable

train id The unique ID of the training job. Integer M

Sample Request

curl --location --request DELETE 'http://localhost:8000/api/vl/train/delete-feature-importance/19' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

-32/48 - Copyright © 2025 Data Intelligence Platform Team

9. Module: Inference APIs

"status_code": 200,
"message": "Feature importance results deleted successfully"

10.5 Get Model Summary
Retrieves the summary and performance metrics of a trained model.
Endpoint: /api/vl/train/model-summary Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Query Parameters

Name Description Data Type Omittable

train_id The unique ID of the training job. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/train/model-summary?train_id=5001" \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

"model_summary": {
"model": "XGBoostClassifier"
"accuracy": 0.925,
"precision": 0.89,
"recall": 0.94,
"fl score": 0.915
I
"confusion matrix": [
[950, 50],
[30, 970]

9. Module: Inference APIs

This section details all APIs related to performing predictions using trained models. This includes real-time, batch, and forecast
predictions.

9.1 Real-time Prediction
This API performs a real-time (single instance) prediction using a trained model.

Endpoint: /api/vl/inference/
Method: POST

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

- 33/48 - Copyright © 2025 Data Intelligence Platform Team

9. Module: Inference APIs

Request Body (application/json)

Name Description Data Type Omittable
train_id The ID of the trained model to use. Integer M
preprocess_id The ID of the preprocessing step. Integer M
features A JSON object containing the feature names and their values Object M

for prediction.

target The name of the target variable to predict. String M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/inference/' \
--header 'Authorization: Bearer <jwt_ token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"preprocess_id": 19,
“train_id": 19,
"features": {
"Account_No": 1434355,
"Base_Offer Name": "B00010"
"RMN_Counter": 12421314,
"KDDI_Counter": 41235346,
"Account_Activation_Date": "08-Aug-24"
"Service Barring": "true"
}
"target": "Churn"

Sample Response

{
"prediction": true,
"accuracy": 0.925
}
9.2 Batch Prediction

This API starts a batch prediction job on an entire dataset using a trained model.

Endpoint: /api/vl/inference/batchPrediction
Method: POST

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Request Body (application/json)

Name Description Data Type Omittable
train id The ID of the completed training job/model. Integer M
dataset id The ID of the dataset to run predictions on. Integer M

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/inference/batchPrediction’ \
--header 'Authorization: Bearer <jwt_token>' \
--header 'Content-Type: application/json' \
--data-raw '{
“train_id": 19,
"dataset_id": 21
3

- 34/48 - Copyright © 2025 Data Intelligence Platform Team

Sample Response

"message”: "Batch prediction job started successfully.",
"status_code": 202

9.3 Get Form for Prediction

9. Module: Inference APIs

Retrieves the required schema/form fields for making a real-time prediction with a specific model.

Endpoint: /api/vl/inference/form-based-prediction
Method: GET

Request Headers

Name Description Data Type

Authorization The bearer token. String

Query Parameters

Name Description

id The unique ID of the training job.

Sample Request

Omittable

M
Data Type Omittable
Integer M

curl --location --request GET 'http://localhost:8000/api/vl/inference/form-based-prediction?id=19" \

--header 'Authorization: Bearer <jwt token>'

Sample Response

{
"id": 19,
"headers": [
{
“column name": "Account No",
"data_type": "Integer",
"default_value": "0"
1
{
“column_name": "Base_Offer_ Name",
"data_type": "String",
"default_value": null
}
1,
“target": "Churn",
"preprocess_id": 19
}

9.4 Generate Forecast

This API runs a forecasting prediction based on a trained time-series model.

Endpoint: /api/vl/inference/forecast
Method: POST

Request Headers

Name Description Data Type

Authorization The bearer token. String

Omittable

M

- 35/48 - Copyright © 2025 Data Intelligence Platform Team

9. Module: Inference APIs

Request Body (application/json)

Name Description Data Type Omittable
train id The ID of the trained forecast model. Integer M
preprocess id The ID of the preprocessing step. Integer M
steps The number of future steps to forecast. Integer M
frequency The time frequency (e.g., 'Week', 'Day"). String M
unique id The unique identifier for the time series. String M
dataset id The ID of the dataset to use for forecasting. Integer O

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/inference/forecast' \
--header 'Authorization: Bearer <jwt_token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"train_id": 2,
"preprocess_id": 2,
"steps": 4,
"frequency": "Week",
"unique_id": "CUST 0001"

Sample Response

{
"forecast": [
{ "date": "2025-10-05", "value": 150.5, "confidence": 0.95 },
{ "date": "2025-10-12", "value": 155.2, "confidence": 0.94 },
{ "date": "2025-10-19", "value": 153.8, "confidence": 0.93 },
{ "date": "2025-10-26", "value": 158.1, "confidence": 0.92 }
1
}

9.5 Get Batch Prediction Results
This API retrieves the results of a completed batch prediction job.

Endpoint: /api/vl/inference/result
Method: GET

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M
Query Parameters
Name Description Data Type Omittable

prediction id The unique ID of the prediction job. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/inference/result?prediction_id=123" \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

"status": "completed",
"result_path": "/path/to/results/prediction_123.csv",

- 36/48 - Copyright © 2025 Data Intelligence Platform Team

10. Module: Auth APIs

"file id": 81,
"dataset_id": 21
}
9.6 List Predictions

This API retrieves a log of all predictions made using a specific trained model.

Endpoint: /api/vl/inference/predictions
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Query Parameters

Name Description Data Type Omittable

train id The unique ID of the training job. Integer M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/inference/predictions?train_id=19' \
--header 'Authorization: Bearer <jwt token>'

Sample Response

"data": [
{

"prediction_id": 123,
"train id": 19,
"date": "2025-09-18T15:00:00Z",
"dataset_id": 21,
"predictor_name": "churn_v1",
"prediction_type": "batch",
"input_data": “"dataset_id:21",
"status": "completed",
"no_of_records": 1000,
"accuracy": 0.925,
"problem type": "Classification",
"domain_name": "Churn"

10. Module: Auth APIs
10.1 Validate Token
This API validates the provided bearer token to ensure it is active and not expired.

Endpoint: /api/vl/validate-token
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M
Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/validate-token' \
--header 'Authorization: Bearer <jwt_token>'

-37/48 - Copyright © 2025 Data Intelligence Platform Team

11. Module: Datalake APIs

Sample Response

"status": "success",
"message": "Token is valid."

11. Module: Datalake APIs
11.1 List Schemas
This API retrieves a list of all available schemas (e.g., bronze, silver, gold) in the datalake.

Endpoint: /api/vl/datalake/schemas
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/datalake/schemas' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

"bronze",
"silver",
"gold",

"default"

11.2 List Tables in Schema
Retrieves a list of all tables within a specific schema.

Endpoint: /api/vl/datalake/schemas/tables
Method: GET

Request Headers

Name Description Data Type Omittable
Authorization The bearer token. String M
Query Parameters
Name Description Data Type Omittable

schema name The name of the schema to inspect. String M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/datalake/schemas/tables?schema_name=gold' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

"customer_churn_predictions",
"telecom_usage forecasts",

- 38/48 - Copyright © 2025 Data Intelligence Platform Team

11. Module: Datalake APIs

"user profiles"

11.3 Get Table Columns
Retrieves the column names and data types for a specific table in a schema.

Endpoint: /api/vl/datalake/tables/columns
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Query Parameters

Name Description Data Type Omittable
schema name The name of the schema. String M
table name The name of the table to inspect. String M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/datalake/tables/columns?schema name=gold&table name=customer churn predictions' \
--header 'Authorization: Bearer <jwt_ token>'

Sample Response

{ "column_name": "customer_id", "data_type": "varchar" },
{ "column_name": "prediction_date", "data_type": "timestamp" },
{ "column_name": "will_churn", "data type": "boolean" },

{ "column_name": "churn_probability", "data_ type": "double" }

11.4 Get Table Metadata
Retrieves detailed metadata for a specific table.

Endpoint: /api/vl/datalake/table metadata
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Query Parameters

Name Description Data Type Omittable
schema name The name of the schema. String M
table name The name of the table. String M

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/datalake/table metadata?schema_name=gold&table name=customer_churn predictions' \
--header 'Authorization: Bearer <jwt_token>'

-39/48 - Copyright © 2025 Data Intelligence Platform Team

Sample Response

{
"schema": "gold",
"table": "customer_churn_predictions",
"owner": "airflow",
"created time": "2025-09-10T10:00:00Z",
"last_access_time": "2025-09-18T18:00:00Z",
"location": "s3://datalake/gold/customer_churn_predictions",
"format": "iceberg"
}

11.5 Get Numeric Stats
Calculates and retrieves basic statistics for a numeric column in a table.

Endpoint: /api/vl/datalake/numeric_stats
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

Query Parameters

Name Description Data Type
schema name The name of the schema. String
table name The name of the table. String
column name The numeric column to analyze. String

Sample Request

curl --location --request GET 'http://localhost:8000/api/vl/datalake/numeric_stats?
schema_name=gold&table_name=customer_churn_predictions&column_name=churn_probability' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

{
“column": "churn_probability",
"count": 10000,
"mean": 0.235,
"std_dev": 0.15,
"min": 0.01,
"max": 0.99,
"median": 0.21
}

11.6 Get Distinct Count
Calculates and retrieves the count of distinct values in a column.

Endpoint: /api/vl/datalake/distinct-count
Method: GET

Request Headers

Name Description Data Type Omittable

Authorization The bearer token. String M

-40/48 -

11. Module: Datalake APIs

Omittable

M

M

Copyright © 2025 Data Intelligence Platform Team

Query Parameters

Name
schema
table

column

Sample Request

Description Data Type
The name of the schema. String
The name of the table. String
The column to analyze. String

Omittable

M

M

12. Module: Ray APIs

curl --location --request GET 'http://localhost:8000/api/vl/datalake/distinct-count?schema=gold&table=user profiles&column=country' \
--header 'Authorization: Bearer <jwt_token>'

Sample Response

"column": "country",
"distinct_count": 85

12. Module: Ray APIs

12.1 Terminate Ray Job

This API is used to manually terminate a running Ray job, such as a training or statistics generation task.

Endpoint: /api/vl/ray/terminate ray job

Method: POST

Request Headers

Name

Authorization

Query Parameters

Name
ray job id

usage

Sample Request

curl --location --request POST 'http://localhost:8000/api/vl/ray/terminate ray job?ray

Description Data Type
The bearer token. String
Description

The unique ID of the Ray job to terminate.

The context/usage of the Ray job.

--header 'Authorization: Bearer <jwt token>'

Sample Response

"status": "success",

"message": "Termination request for Ray job 'ray-job-abcl23' has been sent.

-41/48 -

Omittable

M

Data Type
String

String

Omittable

M

M

job_id=ray-job-abcl23&usage=training' \

Copyright © 2025 Data Intelligence Platform Team

4. API Status Codes

4. API Status Codes

This section lists common HTTP status codes returned by the API endpoints and their meanings.

Status Code Meaning
200 OK - Successful request
201 Created - Resource successfully created
202 Accepted - Request accepted for processing
400 Bad Request - Invalid input or parameters
401 Unauthorized - Authentication required or failed
403 Forbidden - Insufficient permissions
404 Not Found - Resource not found
409 Conflict - Resource conflict
422 Unprocessable Entity - Validation error
500 Internal Server Error - Unexpected error

5. Version

Current Version: 1.0.0
Last Updated: 22 September 2025

-42/48 - Copyright © 2025 Data Intelligence Platform Team

Machine Learning Platform Documentation

Machine Learning Platform Documentation

Version: 1.0.0
Date Created: January 02, 2026

Table of Contents

1. Purpose of the Platform
1.1 Overview
1.2 Why the Platform Exists
1.3 What the Platform Manages
1.4 Design Approach
1.5 Intended Usage

2. High-Level Architecture and Core Components
2.1 Architectural Overview
2.2 Core Components
2.2.1 API and Service Layer
2.2.2 Data Management Layer
2.2.3 Template and Schema Management
2.2.4 Preprocessing and Feature Engineering
2.2.5 Training and Execution Engine
2.2.6 Prediction and Inference Engine
2.2.7 Distributed and Asynchronous Processing
2.3 Cross-Cutting Concerns

3. Data Ingestion and Dataset Lifecycle
3.1 Overview
3.2 Dataset Creation
3.3 File-Level Handling for CSV Datasets
3.4 Schema Validation
3.5 Dataset Usability and State Tracking
3.6 Dataset Statistics Generation
3.7 Incremental Awareness and Reprocessing
3.8 Dataset Retrieval and Visualization Support
3.9 Role of Datasets in Downstream Workflows

4. Template and Schema Design
4.1 Role of Templates in the Platform
4.2 Template Structure
4.3 Data Type Governance
4.4 Template Validation Rules
4.5 Template Updates and Immutability Constraints
4.6 Training-Specific Templates
4.7 Templates as a Contract Across the Lifecycle
4.8 Operational Benefits of the Template Model

5. Preprocessing and Feature Engineering
5.1 Purpose of the Preprocessing Layer
5.2 Preprocess Sessions as Versioned Artifacts
5.3 Data Access and Execution Strategy
5.4 Column Categorization Using Templates
5.5 Numerical Feature Processing
5.6 Categorical Feature Encoding

-43/48 - Copyright © 2025 Data Intelligence Platform Team

6.

10.

11.

5.7 Datetime Feature Handling

5.8 Missing Value Handling

5.9 Train-Test Split and Data Persistence

5.10 State Management and Reusability

5.11 Incremental and Tune-Aware Preprocessing
5.12 Error Handling and Observability

5.13 Why Preprocessing Is Explicit in This Platform

Model Training and Execution

6.1 How Training Fits Into the Platform
6.2 Problem Type as the Foundation

6.3 Mapping Dataset Columns to Meaning
6.4 Algorithm Resolution and Constraints
6.5 Creating a Training Session

6.6 Preprocessing and Execution Strategy

6.7 Hyperparameter Tuning and Incremental Learning

. Inference and Prediction Workflow

7.1 Overview

7.2 Preconditions for Prediction

7.3 Single-Record (Form-Based) Prediction
7.4 Algorithm-Specific Inference Handling
7.5 Batch Prediction Workflow

7.6 Forecasting Inference

7.7 Prediction Persistence and Auditability
7.8 Error Handling and Stability

7.9 Design Rationale

. Batch Prediction and Ray Execution

8.1 Purpose and Design Intent

8.2 Entry Conditions for Batch Prediction
8.3 Dataset Validation and Preparation

8.4 Feature Scaling and State Application
8.5 Ray Job Submission Model

8.6 Execution Inside Ray

8.7 Completion, Status Updates, and Results

. Feature Importance and SHAP Analysis

9.1 When Feature Importance Is Available
9.2 Non-SHAP Feature Importance

9.3 SHAP-Based Explainability

9.4 Incremental Training and SHAP

Forecasting and Time-Series Inference
10.1 Supported Forecasting Models

10.2 Frequency and Horizon Validation
10.3 Handling of Unique Identifiers

10.4 Exogenous Variable Processing

10.5 Forecast Execution and Output

10.6 Error Handling and Safety Guards

Error Handling, Validation, and Guardrails
11.1 Design Philosophy

11.2 Validation at Data Ingestion

11.3 Guardrails in Training Configuration

11.4 Preprocessing and Feature-Level Validation
11.5 Ray Job Execution and Failure Handling
11.6 Inference-Time Validation

11.7 Batch Prediction Safeguards

- 44/48 -

Table of Contents

Copyright © 2025 Data Intelligence Platform Team

1. Purpose of the Platform

11.8 Status Propagation and User Visibility
11.9 Summary

1. Purpose of the Platform

1.1 Overview

This platform exists to provide a single, consistent way to build and operate machine learning models across the organization.

Instead of individual teams handling data preparation, model training, and prediction in their own scripts or services, the
platform centralizes these workflows behind well-defined APIs and controlled execution paths. This allows teams to focus on
model logic and use-case design, while the platform takes responsibility for data validation, preprocessing consistency, execution,
and tracking.

From a technical perspective, the system acts as an orchestration layer over data, preprocessing pipelines, model training jobs,
and inference workloads. From a user’s perspective, it offers a structured, repeatable process for moving from raw datasets to
production-ready predictions.

1.2 Why the Platform Exists

As machine learning usage scales, a few recurring problems tend to emerge: inconsistent preprocessing between training and
inference, difficulty reproducing past results, long-running jobs blocking application services, and limited visibility into what data
or configuration produced a given model.

This platform is designed to address those problems directly.

All training and prediction operations run through a controlled lifecycle. Datasets are explicitly marked for training or prediction
use. Feature mappings, target selection, and preprocessing steps are recorded at training time and reused verbatim during
inference. Model artifacts and metrics are stored alongside the metadata needed to understand how they were produced.

The result is a system where models can be trained, evaluated, reused, and updated without relying on undocumented
assumptions or external scripts.

1.3 What the Platform Manages

The platform manages the full machine learning workflow end-to-end.

It starts with data definition. Before any model can be trained, the structure of the data is defined using templates. These
templates describe column names, data types, and default values, and they serve as the contract between datasets,
preprocessing logic, and models. This approach ensures that training and prediction data always conform to an expected
schema.

Once data is defined and validated, the platform manages model training. Training requests capture not only the algorithm and
problem type, but also how each column is interpreted (for example, which column is the target, which represents time, or which
acts as a unique identifier). The platform then coordinates preprocessing, model execution, metric collection, and artifact
storage.

Finally, the platform manages prediction and forecasting. Predictions are always executed using the preprocessing state
generated during training, ensuring consistency between training and inference. Both real-time (form-based) and batch
prediction workflows are supported, as well as time-series forecasting with optional exogenous variables.

1.4 Design Approach

The platform is intentionally conservative in how it handles machine learning workflows.

-45/48 - Copyright © 2025 Data Intelligence Platform Team

1.5 Intended Usage

Validation is enforced early and often. Invalid configurations are rejected before any compute-intensive work begins. This
includes checks on dataset usage, problem type compatibility, feature mappings, and algorithm constraints. While this may feel
restrictive, it significantly reduces runtime failures and ambiguous behavior.

Long-running operations such as training, batch prediction, and SHAP computation are executed asynchronously. The API layer
remains responsive, while execution is handled by distributed workers. Results are reported back through well-defined callbacks
and persisted in the database.

Throughout the system, emphasis is placed on traceability. Every dataset, training run, and prediction can be traced back to the
inputs and configuration that produced it. This is essential for debugging, auditing, and long-term model maintenance.

1.5 Intended Usage

The platform is intended for teams that need to train and operate machine learning models in a controlled, repeatable manner.

It supports iterative model development, where models are retrained or incrementally updated as new data becomes available. It
also supports large-scale batch inference workflows and forecasting use cases that require careful handling of time and
frequency.

By enforcing structure and consistency, the platform allows machine learning workflows to scale without becoming brittle or
opaque.

-46/48 - Copyright © 2025 Data Intelligence Platform Team

2. High-Level Architecture and Core Components

2. High-Level Architecture and Core Components

-47/48 - Copyright © 2025 Data Intelligence Platform Team

2. High-Level Architecture and Core Components

Define schema Upload raw data

l Phase 1: Data Definition
and Ir

Upload Dataset CSV or

Create Ti lat
reate fempiate Iceberg Table

Provide schema Submit dataset

Validate Data Against
Template

Valid Invalid

Reject Dataset and Return
Validated Dataset Errors

Select dataset

Phase 2: Preprocess{pg and

Create Predictor
Configuration

Request online prediction Submit batch dataset Submit training request

Run Preprocessing Pipeline

Resolve algorithm and

Apply scaling and encoding B

Model Parameters and

Preprocessing State File
B ing 3 ! Metadata

!

Load preprocessing state Load training configuration

“~Phase 3: Distributed ,_—~"

Ray Distributed Training

Apply preprocessing Persist trained model Apply preprocessing

v

Trained Model Artifact

Load trained mocAie-lj .
\ 4 4 Phase 4: Infere.ncm'd\’ K g
onsumption

Real Time Prediction API Batch Prediction Job

! -48/48 -

Return prediction © 2025 Data Infelligence Platform Team

Persist batch r(éé’é’t‘élélght b

| Prediction Results and |

	Data ML Guide
	Welcome to the Data ML API Documentation
	Get Started

	Data ML - API Documentation
	Table of Contents
	1. Introduction
	1.1 Purpose of this Guide
	1.2 Overview of the Application

	2. API Usage
	2.1 Overview of the APIs
	2.2 Authentication

	3 API Definitions
	1. Module: Login APIs
	1.1 Login Access Token
	1.2 Test Token
	1.3 Refresh Token
	1.4 Logout
	1.5 Reset Password

	2. Module: User APIs
	2.1 Create User
	2.2 Read Users
	2.3 Retrieve User by ID

	3. Module: RBAC APIs
	3.1 Create Role
	3.2 Create Permission

	4. Module: Utils APIs
	4.1 Health Check

	5. Module: Template APIs
	5.1 Create Template
	5.2 Get All Templates
	5.3 Get Template
	5.4 Update Template
	5.5 Delete Template

	6. Module: Dataset APIs
	6.1 Upload Dataset
	6.2 List Datasets
	6.3 List Validated Datasets
	6.4 Delete Dataset
	6.5 Get Dataset by ID
	6.6 View Dataset
	6.7 Generate Statistics

	7. Module: File APIs
	7.1 Add Files to Dataset
	7.2 List Files in Dataset
	7.3 View File Content
	7.4 Delete File
	7.5 Download File
	7.6 Get File Details by ID

	8. Module: Train APIs
	8.1 Create Training Job
	8.2 Get Details for Training
	8.3 List Training Jobs
	8.4 Refresh Training Statuses
	8.5 Delete Training Job
	8.6 Update Model
	8.7 Training Result Callback
	8.8 Download Training Schema
	8.9 View Feature Importance
	8.10 Generate Feature Importance
	8.11 SHAP Result Callback
	8.12 Delete Feature Importance
	10.5 Get Model Summary

	9. Module: Inference APIs
	9.1 Real-time Prediction
	9.2 Batch Prediction
	9.3 Get Form for Prediction
	9.4 Generate Forecast
	9.5 Get Batch Prediction Results
	9.6 List Predictions

	10. Module: Auth APIs
	10.1 Validate Token

	11. Module: Datalake APIs
	11.1 List Schemas
	11.2 List Tables in Schema
	11.3 Get Table Columns
	11.4 Get Table Metadata
	11.5 Get Numeric Stats
	11.6 Get Distinct Count

	12. Module: Ray APIs
	12.1 Terminate Ray Job

	4. API Status Codes
	5. Version

	Machine Learning Platform Documentation
	Table of Contents

	1. Purpose of the Platform
	1.1 Overview
	1.2 Why the Platform Exists
	1.3 What the Platform Manages
	1.4 Design Approach
	1.5 Intended Usage

	2. High-Level Architecture and Core Components

